Confluence and Superdevelopments

Femke van Raamsdonk™

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract. In this paper a short proof is presented for confluence of a
quite general class of reduction systems, containing A-calculus and term
rewrite systems: the orthogonal combinatory reduction systems. Com-
binatory reduction systems (CRSs for short) were introduced by Klop
generalizing an idea of Aczel. In CRSs, the usual first-order term rewrit-
ing format is extended with binding structures for variables. This permits
to express besides first order term rewriting also A-calculus, extensions
of A-calculus and proof normalizations. Confluence will be proved for or-
thogonal CRSs, that is, for those CRSs having left-linear rules and no
critical pairs. The proof proceeds along the lines of the proof of Tait and
Martin-Lof for confluence of A-calculus, but uses a different notion of
‘parallel reduction’ as employed by Aczel. It gives rise to an extended
notion of development, called ‘superdevelopment’. A superdevelopment
is a reduction sequence in which besides redexes that descend from the
initial term also some redexes that are created during reduction may be
contracted. For the case of A-calculus, all superdevelopments are proved

_to be finite. A link with the confluence proof is provided by proving that
superdevelopments characterize exactly the Aczel’s notion of ‘parallel
reduction’ used in order to obtain confluence.

1 Introduction

The study of A-calculus and of the foundations of functional programming has
led to a rich variety of classes of reduction systems, an important one being first-
order termn rewriting. For a lot of different although related reduction systems,
different although related proofs of syntactic properties have been given.

A first attempt to provide a uniform framework for a number of extensions
of A-calculus was given by Hindley’s A(a)-reductions [3]. A much more extensive
format in the form of contraction schemes, was developed by Aczel [1]. However,
contraction schemes do not contain first-order term rewriting. Inspired by Aczel,
Klop defined the Combinatory Reduction Systems (CRSs) [6]. The set-up of
CRSs originates from term rewriting. Term rewriting systems (TRSs for short)
handle pattern-matching, but they lack a notion of binding, like for instance in

fb ?dz
V(P (ff\) = Q(z))

*

supported by NWO /SION project 612-316-606 Extensions of orthogonal rewrite sys-
tems - syntactic properties.

169

So the first thing to be done is adding binding structures for variables. If it comes
to ‘using’ binding structures, a notion of substitution is needed, like in

1/35% ~1/3a3
P(t) = Q(t)

o[z = 2]

This leads to introducing metavariables, that indicate places where an arbitrary
term can be plugged in, with the possibility to express substitutions. In the case
of CRSs, this is done by assigning to all metavariables a fixed arity. If it is not
specified in the example which function, which predicates and which term is
meant, the expressions can be written as

J, 2(z)dz
Ve(Z(z) = Z'(z))
Az.Z(z)

So CRSs can be viewed as TRSs with binding structures for variables and with
metavariables having a fixed arity. Extending term rewriting considerably in this
manner yields a general framework in which proofs of syntactic properties can
be obtained in a uniform way.

In this paper, the property ‘confluence’ is a matter of concern. It means that
for every two coinitial reduction sequences s —» ¢t and s —» u a term v can be
found such that t — v and u — v. The term v is called a common reduct of ¢
and u. An equivalent notion is the Church-Rosser property, stating that every
pair of convertible terms has a common reduct.

In this paper confluence is proved for all orthogonal CRSs. Confluence for
orthogonal CRSs has been proved by Klop [6], by proving first that all develop-
ments are finite. The strategy of the proof presented in this paper is very similar
to the way confluence for A-calculus has been proved by Tait and Martin-Lof. In
a similar way, Aczel proves confluence for his contraction schemes.

In the proof a relation > on terms is used which reflexive-transitive closure
equals reduction. When characterizing this relation in terms of reduction, it turns
out that the reduction sequences exactly corresponding to this relation > form a
generalization of developments; they are therefore called superdevelopments. We
prove that superdevelopments in A-calculus are always finite.

Another new proof of confluence of a large class of reduction systems with
bound variables is given by Khasidashvili [5]. This proof proceeds along the lines
of the one by Klop, but a slightly stronger version of the Church-Rosser property
is proved. Takahashi [11] proves confluence of A-calculi with conditional rules in
a way similar to the method of Tait and Martin-Lof. Nipkow [8] proves conflu-
ence for orthogonal higher-order rewrite systems (HRSs) in the same manner.
HRSs are close to CRSs but the starting point is A-calculus rather than term
rewriting. Kahrs investigates an extension of A-calculus with first-order rewrit-
ing, and proves several syntactic properties [4]. Confluence results for another
class of general reduction systems, the so-called subtree replacement systems,
are studied by Rosen and O’Donnell in respectively [10] and [9].

170

2 Combinatory Reduction Systems

Metavariables and variables are distinguished in the following way:

e Metavariables indicate places in rules where an arbitrary term can be plugged
in, like z in the TRS rule F(z) — G(z) and like M and N in the S-reduction
rule for A-calculus, (Az.M)N — M[z := N].

e Variables are on the one hand used to build up terms, like in the term F(z)
in some TRS and in zz in A-calculus, and on the other hand they are used to
serve as placeholders indicating a place where a substitution can be carried
out, like in the term Az.z in A-calculus.

Metavariables occur only in left- and right-hand side of rules. A nullary metavari-

able Z occurring in the left-hand side of some rule, can be instantiated by an

arbitrary term. A unary metavariable occurring in the form Z(z) in the left-
hand side of a rule can be instantiated by a term { possibly but not necessar-
ily containing free occurrences of the variable z. If this metavariable occurs in
the right-hand side of the rule in the form Z(s) then it is instantiated by the
term £ in which all free occurrences of z are replaced by s. For example, the

B-reduction rule of A-calculus, with metavariables M and N is usually written

as (Az.M)N — Mz := N] but is given as well as (Az.M (z))N — M(N). In the

latter formulation, the metavariables M and N have arity 1 and 0 respectively.

The alphabet of a CRS consists of

variables, written aszy z ...,

metavariables with a fixed arity, written as Z Z3 27 ...,

function symbols with a fixed arity, writtenas F G H ...,

an abstraction operator, written as []-,

e parentheses and commas.

A term t from which some variable z has been abstracted is written as [z]t.

Function symbols of arity O are called constant symbols. Metaterms and terms

are built up from the alphabet given above.

Definition 1. The set MTerms of metaterms is the smallest set satisfying

(1) © € MTerms for every variable z,

(2) if t € MTerms then [z]t € MTerms for every variable z,

(3) if F is a function symbol of arity n and ty,...,t, € MTerms, then
F(ty,...,t,) € MTerms,

(4) if Z is a metavariable of arity n and t,...,t, € MTerms, then Z(t,...,t,) €
MTerms.

The set Terms of terms consists of all metaterms without any metavariable.

If C is a constant symbol then we write C instead of C(). Identity on MTerms
and on Terms is denoted by =.

In a metaterm or term of the form [z]t, we call £ the scope of the abstraction
[z]. A variable z occurs free in a metaterm or term if it is not in the scope of a
[z]. It occurs bound otherwise. A metaterm or term is called closed if all variables
occur bound. Like in A-calculus, bound variables can be renamed. (Meta)terms
that are identical up to a renaming of bound variables are considered equal. This

171

permits to adopt the convention that in a term no variable is abstracted over
twice or more. Instead of [z,]...[x,]t we write [z ...z,]t.

Note that the abstraction in a (meta)term of the form [z]t, is purely syntactic.
The actual (operational) meaning of this abstraction has to be expressed by a
function symbol and its reduction rules.

Let O be a fresh symbol. A contezt is a (meta)term with one or more occur-
rences of (0. A context with exactly one occurrence of I is written as C[], and
one with n occurrences of O as C[,...,]. If C[,...,] is a context with n occur-
rences of O and ty,...,t, are (meta)terms, then C[ty,...,t,] denotes the result
of replacing from left to right the occurrences of O by ¢1,...,t,. A (meta)term
s is said to be a sub(meta)term of of a (meta)term ¢ if a context C[] exist such
that t = C[s].

Ezample 1. The alphabet of the untyped A-calculus consists of

e a unary function symbol A for A-abstraction

¢ a binary function symbol Ap for application

Then we write for instance A([z]z) for Az.z, A([z]Ap(z, y)) for Az.zy, and

Ap(A([z]y), z) for (Az.y)z.

Note that according to the definition of Terms from this alphabet a lot of terms
can be built that don’t correspond to A-terms. One reason is that it cannot be
specified that in order to form a A-term, the argument of the symbol A must
be an abstraction term. This can be done by extending the notion of arity. The
presence of ‘junk’ terms doesn't yield a problem when applying for instance the
confluence result, since a term corresponding to a A-term reduces always to terms
corresponding to A-terms.

A reduction relation on the terms of a CRS is generated by a set of reduction
rules.

Definition 2. A reduction rule is a pair of metaterms (a, 8) written as & — £,

satisfying the following constraints:

e o and [are closed,

o o is of the form F(ay,...,an),

e metavariables occurring in 3 occur in « as well,

e metavariables in & occur only in the form Z(zy,...,z,) with z,,...,z, dis-
tinct variables.

A reduction rule acts as a scheme from which actual reduction steps can be
obtained. Metavariables in the left-hand side of a rule indicate places where
an arbitrary term can be substituted. Variables occur only bound and serve to
indicate places where substitutions are carried out. A left-hand side of a rule is
not allowed to be a metavariable nor an abstraction term; the former because this
would permit to rewrite an arbitrary term and the latter because the abstraction
is considered to be purely syntactic without any operational meaning. Allowing
to have metavariables in 8 that do not occur in & would permit to introduce
terms out of the blue by reducing. Substitution mechanismns are expressed by
the reduction rules as follows: Z(z1,...,2,) in the left-hand side of some rule

172

is instantiated by a term s possibly but not necessarily containing the variables
Ty, ...,Ts. An occurrence of Z in the right-hand side in the form Z(ty,...,ts)
is then instantiated by s in which the free occurrences of z1,...,z, are replaced
by ty,...,t, respectively.

Ezample 2. The B-reduction rule of A-calculus is in CRS format written as

Ap(M([z]2(=)), 2') — 2(Z").

Now it will be described how the reduction rules generate an actual reduction
relation on Terms. Therefore the concept of ‘valuation’ is introduced. Valuations
express how metavariables are instantiated by terms. Before defining valuations
we introduce as a notational device the n-ary substitute (a name due to Kahrs

[4]).

Definition 3. Let t be a term is some CRS R.

(1) For an n-tuple of distinct variables z1, ..., %, the expression A, ..t
is an m-ary substitute.

(2) An n-ary substitute A(@1,....z,).t can be applied to an n-tuple of terms

(s1,...,8s), yielding as result the term t with sy,..., s, simultaneously sub-
stituted for zy,..., z, respectively:
Az, .o 20))81, oy Sn) = E[T1 i= 81, ..., T 1= 84

So an m-ary substitute can be considered as a function Terms™ — Terms. For
an n-ary substitute A(z1,....z,).t the variables 21,...,z, are considered to be
bound in ¢t and may be renamed so that no name clashes occur. The variables
in t that don’t occur in (zy,...,z,) and that are not bound in ¢ are called the
free variables of the substitute A(z1,....z,).t.

Now the definition of a valuation can be given.

Definition4. A valuation is a map o that assigns to an n-ary metavariable Z
an n-ary substitute:

o(Z)=Xz1,...,%n).8

The map o is extended to a homomorphism on metaterms (denoted as o as well)

in the following way:

(1) o(z) = =,

(2) o([z]t) = [z]o(t) for a variable z and a metaterm t,

(3) o(F(t1,-..,tn)) = F(o(t1),...,a(ts)) for a function symbol F of arity n and
metaterms £y, ...,¢,,

(4) o(Z(t1,.. ., t)) = o(Z)(o(t1),...,0(ts)) for an metavariable Z of arity n
and metaterms tq,...,t,.

Without any conditions on the valuations, in instantiated reduction rules vari-
ables can be bound unintendedly. Two kmds of problems can occur.

First, variables can be captured by abstractors by plugging in terms for
metavariables. This is for instance the case if F([1Z) is instantiated by a val-
uation that assigns z to Z. So we have to require that bound variables in rules
are renamed such that they differ from free variables in substitutes.

173

Second, in the instance of a right-hand side, substitution can yield unintended
bindings. This is for example the case if Z(Z') is instantiated by the valuation
o with o(Z(u)) = AMu).F([y]u) and o(Z') = y. Then o(Z(Z")) = F([y]y). Situa-
tions like this can be avoided by requiring for every two different metavariables
Zy(z1,. ..,k) and Za(zy,...,Tk,) occurring in the same reduction rule, the
free variables in o(Zy(z1,...,Z,)) to be different from the bound variables in
0(Z2(z1,...,Zk,)). In the following we will suppose that these requirements are
met. Informally, they can be thought of as ‘rename bound variables as much as
possible, in order to avoid free occurrences of z to be captured unintentionally
by abstractors [z].’

Finally the actual reduction relation — on Terms can be defined.

Definition 5. Let o — 8 be a reduction rule and o a valuation. An instance
o(a) of the left-hand side of a reduction rule is called a redex. The associated
right-hand side o(83) is called its contractum. Replacing a redex by its contractum
in a context is called a reduction step and is written as Clo(a)] — Clo(B)].
A sequence of zero or more reduction steps is called a reduction sequence or
reduction. If a reduction from s to t exists we write s — t and say that s reduces
to t, and t is called a reduct of s.

Ezample 3. The reduction step (Az.z)y — y in A-calculus is obtained by in-
stantiating the S-reduction rule Ap(A([z]Z(z)),Z') — Z(Z’') in the following
way: o(Z) = Mz).z and o(Z') = y. Then o(A[z].Z(z)) = A([z]z) so the left-
hand side of the rule instantiated by o is Ap(A[z]z,y). This term reduces to
o(2(2) = (M2).)y) = .

A CRS is called left-linear if in none of its reduction rules the same metavariable
occurs twice or more in the left-hand-side. Two reduction rules @« — § and
o' — B’ are said to overlap if there exist valuations o and ¢’ such that o(a) =
o'(a}) for a submetaterm o} of @' that is not of the form Z(zy,...,z,). Then
a context C[] exists such that Co(a)] = o'(o). In the case that the reduction
rules @ — B and o/ — ' are the same, we require additionally the context C[]
to be non-trivial. The term C[o(a)] = ¢'(¢/) can be reduced in two different
ways, yielding as a result C[o(8)] or o’(8') respectively.

If a CRS doesn’t contain overlapping rules then it is called non-ambiguous.
If for every two overlapping rules & — 2 and o/ — ' with Co(a)] = o'(a) it
holds that C[o(8)] = o’(4’), then the CRS is said to be weakly non-ambiguous.

A CRS that is left-linear and non-ambiguous is called orthogonal. A CRS
that is left-linear and weakly non-ambiguous is called weakly orthogonal.

Ezample 4. An orthogonal CRS is A-calculus with f-reduction; if n-reduction
is added it is a weakly orthogonal one. The n-rule is in CRS format written
as A[z]Ap(Z,z)) — Z. Each time that a term contains a f-and an 7-redex
such that they share a A, both possible reduction steps yield the same result.
For instance, the term @(\([z]@(y, =), z)) is itself a B-redex and contains non-
trivially the n-redex A([z]@(y,2)). Reducing the (-redex yields the same result
as reducing the n-redex, namely @(y, z).

174

CRSs themselves are untyped systems. Nevertheless various typed systems like
simply typed A-calculus and system F can be written in the CRS framework.

In the original definition of CRSs by Klop, all function symbols are nullary
and a distinguished symbol for application is used. Metavariables have, exactly
like in this set-up, a fixed arity.

It is easily seen that every applicative system can be written as a functional
one by writing all applications explicitly. A functional system can be written in
applicative format by turning all function symbols into constants and adding a
binary operator for application that is not written explicitly. Then the functional
CRS correspond to a sub-CRS of its applicative version. A sub-CRS of a CRS R
is defined as a CRS obtained from R by restricting the set of terms to a subset
that is closed under reduction. So the functional and applicative formats have
the same expressive power.

The confluence result, like most syntactic results for CRSs, carries over di-
rectly to sub-CRSs. This explains why it is no problem when the CRS represen-
tation of a system contains ‘junk’ terms.

3 Confluence for Orthogonal CRSs

In this section all orthogonal CRSs will be proved to be confluent. The strategy

of the proof is essentially the same as the one of the proof of confluence for

A-calculus with B-reduction by Tait and Martin-Lof [2]. This proof method is

employed by several others [1], [8], [11], mostly in order to prove confluence.

A relation > on Terms is defined such that its reflexive-transitive closure
equals reduction. For this relation > the diamond property, given in the next
definition, will be proved.

Definition 6. A binary relation b satisfies the diamond property if for every a,
b and ¢ such that a b b and a b ¢ there exists a d such that b>d and ¢ d.

Having proved the diamond property for >, confluence of the reduction relation
follows immediately.

Definition 7. The relation > on Terms is defined as follows:

(1) z > z for every variable z,

(2) if s > t then [z]s > [z]t for every variable z,

(3)if sy > t1,...,8, > t, then F(s1,...,s,) > F(ty,...,t,) for every n-ary
function symbol F,

(4) if sy > ty,...,8, > ¢, and F(t;,...,t,) = o(a) for some reduction rule
a — 3 and valuation o, then F(s1,...,s,) > o(B).

The fourth clause can be depicted as follows:
F(s1,...,85)

vV IV N\
o(@) = F(ti,...,t,) — o(B)

175

The first three clauses of the definition state that > is a reflexive relation that
is closed under term formation. The fourth clause expresses that s > t if s
reduces to t by a parallel ‘inside-out’ reduction, in which possibly redexes that
are ‘created upwards’ are contracted. Note that in this clause F(sq,...,s,) is
not necessarily a redex.

The next proposition states that > is indeed a useful relation to prove the
diamond property for.

Proposition 8. The transitive closure of > equals reduction.

The crucial step in proving the diamond property for > is proving that > satisfies
a property named ‘coherence’. This notion is originally introduced by Aczel [6].

Definition 9. A binary relation > on Terms is said to be coherent with respect
to reduction if the following holds: if F(a,,...,a,) = o(a) for some reduction
rule @ — f and valuation o, and a; » by,...,a, > b,, then we have for some
valuation 7 that F(b,...,b,) = 7(a) with o(8) » 7(B).

Coherence can be depicted as follows:
F(al,...,an) — a

\v4 \v \V4
F(bl,...,bn) - b

Two technical propositions are needed in order to prove coherence of > with
respect to reduction.

Proposition10. Ifa > b and s; > t1,...,8, > t, then
a[zy = 81,..., Ty 1= 8,] 2 b[E =11, ...Tp 1= 1,)
PROOF. Induction on the derivation of a > b. O

Proposition 11. Lett be a metaterm containing only the metavariables Z, ..., Z},.
Let o and 7 be valuations. If o(Zi(z1,...,2n;)) = T(Zi(z1, ..., ®0,)) fori =
1,...,k, then a(t) > 7(t).

PROOF. Induction on the structure of ¢. 0O

Lemma 12. The relation > is coherent with respect to reduction.

PROOF. Suppose F(ai,...,a,) = o(a) — o(B) and a1 > by,...,an > b,.
By Proposition 8 we have a; —» b;,...,a, — b,. By non-ambiguity, we know
that all reduction steps take place in instances of metavariables in a. Together
with left-linearity this yields that F(by,...,b,) is still an instance of «, say
F(by,...,b,) = 7(a) with contractum 7(8). Now it has to be proved that
o(B8) > 7(B). Appropriate first parts of derivations of a; > by,...,a, > b,
form a derivation for o(Z;(z1,...,21,)) = 7(Zi(z1,...,2k,)) for every kj;-ary
metavariable Z; occurring in . Note that metavariables in a only occur in this
form. In 8 occur only metavariables that occur in @ as well, so by Proposition
11 we can conclude o(8) > 7(8). 0

176

Theorem 13. The relation > satisfies the diamond property.

PROOF. We shall prove that for any a, b and c such that a > b and a > ¢ there
exists a d such that b > d and ¢ > d. The proof proceeds by induction on the
derivation of a > b.

e Ifa>bisz > z then necessarily ¢ = z. Take d := z.

o Ifa>bis[z]a’ > [z]b’ with @’ > ¥, then c is necessarily of the form [z]¢’. By
induction hypothesis, a d' exists such that ¥’ > d' and ¢ > d'. By defining
d :=[z]d', both b > d and ¢ > d are satisfied.

o Ifa>bis Flay,...,an) = F(by,...,bs) with ay > b1,...,a, > b,, then
a > ¢ can be due to the third or to the fourth clause of the definition of >.
First we consider the case that a > c is F(a,...,a,) > F(e1,...,c,) with
a, > ¢i,...,8, > Cp. By induction hypothesis d,...,d, exist such that
b; > d; and ¢ > d; for i = 1,...,n. Define d := F(dy,...,d,). Thenb >d
and ¢ > d hold.

Second we consider the case that a > ¢ is due to the fourth clause of the

definition of >. In that case a = F(ay,...,a,) and there exist ¢, ..., ¢, such
that @, > ¢1,...,a, > ¢, and Flcy,...,¢,) = o(a) — o(8) = ¢ for some
reduction rule @ — B and valuation o. By induction hypothesis di,...,d,

exist such that b; > d; and ¢; > d; for ¢ = 1,...,n. By coherence of > we
have F(dy,...,d,) = 7(a) with o(8) > 7(8). Define d := 7(8). Then b > d
holds by the fourth clause of the definition of > and ¢ > d holds by coherence
of >.

e The last case to be considered is when a > b is due to the fourth clause of
the definition of >. Then a = F(ay,...,a,) and there exist by,..., b, such
that a; > by,...,a, > b, and F(by,...,b,) is a redex with contractum b, say
F(b,...,b,) = o(a) — o(B) = b for a reduction rule & — §. Again, a > ¢
can be due to either the third or the fourth clause of the definition of >.
The case that @ > ¢ is due to the third clause of the definition is similar to
the second case in the previous step in the proof.

Second we consider the case that a > ¢ is a consequence of the fourth clause of
the definition of >. Then there exist ¢,..., ¢, suchthata; > ¢1,...,a, > ¢,
and we have F(cy,...,c,) = o'(/) — o'(8') = c for some reduction rule
o' — ' and valuation ¢’. By induction hypothesis, dy,...,d, exist such
that b; > d; and ¢; > d; for 1 = 1,...,n. Coherence of > yields that one
has F(dy,...,ds) = 7(a) with 6(8) = b > 7(8) and F(di,...,d,) = 7'()
with ¢'(8') = ¢ > 7/(8'). So 7(a) = 7'(a’) and by orthogonality we have
7 = 7' and a = o'. Define d := 7(8). By coherence we have b = o(8) > d
and ¢ =d'(f') > d.

O
The main result of this section is a direct result of this theorem.

Corollary 14. All orthogonal CRSs are confluent.

177

4 Superdevelopments for A-calculus

In this section we fix attention to A-calculus. Confluence for A-calculus is proved
by Tait and Martin-L&f using a relation —; whose transitive closure equals re-
duction. Another proof of confluence can be given by first proving that all devel-
opments are finite (see [2]). A development is a reduction sequence in which only
descendents of redexes that are present in the initial term may be contracted.
It is not allowed to contract redexes that are created along the way. The crucial
notions in both proofs are related in the following way: M +—; N if and only if
a (complete) development M — N exists (see [2]).

The relation between > and ~; is as follows: M +—; N implies M > N but
not necessarily vice versa. Questions arising are: can the reduction sequences
corresponding exactly to > be characterized, and, if so, are these reduction
sequences always finite?

In this section we shall characterize the reduction sequences corresponding
exactly to the relation > on A-terms. In order to do so, a set of labelled A-
terms A; and labelled SB-reduction — g on them will be defined. Lambda’s will
be labelled by a label from a countably infinite set of labels I, and application
nodes will be labelled by a subset of I. If the labelling of a A-term M satisfies
certain conditions, then its §j-reduction to normal form is, after having erased
all labels, a superdevelopment. All superdevelopments are proved to be finite.

In [7] Lévy analyses the different ways in which B-redexes can be created.
The following possibilities are distinguished (written in the usual notation for
A-calculus):

1) (AzAy.M)N)P —5 (Ay.M[z:= N])P
(2) (Azz)(Ay.-M)N —5 (Ay.M)N
(3) (Az.ClzM])(Ay.N) —p C'[(Ay.N)M'] where C' and M’ stand for C respec-
tively M in which all free occurrences of z have been replaced by Ay.N.
The first two created redexes are ‘innocent’ and may be contracted in a superde-
velopment. Note that, if we think of a A-term as a tree built from application-
and A-nodes, the redexes in the first two cases are ‘created upwards’. In the last
case, on the other hand, the redex isn’t created upwards, and may not be con-
tracted in a superdevelopment. The result that all superdevelopments are finite
illustrates that all infinite G-reduction sequences in A-calculus are due to the
third way of redex creation; indeed redex creation e.g. in the reduction sequence
of (Az.zz)(Az.zz) happens in this way.

In the following, we shall write the application nodes explicitly, but abstrac-
tion terms as usual. Further, the relation > when only used on A-terms can be
simplified a bit.

Definition 15. The relation > on A-terms is defined in the following way:

(1) z > z for each variable z,

(2) if M > M’ then Axz.M > Az.M' for a M-term M,

(3) f M > M’ and N > N’ then Ap(M,N) > Ap(M', N') for A-terms M and
N,

178

(4) if M > dz.M' and N > N', then Ap(M, N) > M'[z := N'] for A-terms M
and N.

We proceed by defining the set of labelled A-terms.

Definition 16. The set A; of labelled A-terms is defined as the smallest set such
that

(1) =z € A; for every variable z,

(2) if M € Ajand i € I, then \;z. M € Ay,

(3) if M,N € A and X C I, then Ap* (M, N) € A,

Erasing all labels of a term M € A; is done by a function E : A; — A that is
defined inductively as follows:

E(z)==z
E(Mz.M) = Az.E(M)
E(Ap* (M1, My)) = Ap(E(M;), E(M3))

Let p(I) denote the powerset of I, i.e. the set of all subsets of I. A labelling L for

a A-term M is a partial function from the symbols of M to I U p(I), that is only

defined on symbols Ap and J, to which a subset of I respectively an element of

I is assigned. The result of applying L to M is written as ML. So E(ML) = M.
The reduction rule 8; on A; is defined as

ApX(\;z.M,N) =4 M[z:=N] ifieX

where the substitution [z := N] is defined as usual. Like usually in A-calculus,
we adopt the variable convention, i.e. all bound variables in a statement are
supposed to be different from the free ones.

Definition 17.

e A term M € A is called good if no label X of an application node contains
the index i of a A occurring outside the scope of this application node.
A labelling L is said to be good for a A-term M if ML is a good term.

e A labelling L is an initial labelling for a A-term M if it is good for M and all
A’s have a different label.

o Two labelling are said to be disjoint if no element of I occurs in both la-
bellings.

¢ Two terms M and N of A; are said to be disjointly labelled if there exist
A-terms M' and N’ and disjoint labellings L; and L, such that M'Lt = M
and N'I= = N.

For example, a good term is Ap!Z (Ap{*} (A z.)5y.2y, 2),), but, on the other
hand, the term Apt'} (A1z.Ap{2}(z, 1), Ay.y) isn’t good. It is clear that all sub-
terms of a good term are good. The property ‘good’ is preserved under reduc-
tion, i.e. f;-reduction cannot push a A outside the scope of an application node

in which it occurred originally. This is proved in the following proposition, that
will be used implicitly.

179

Proposition 18. If M € A; is a good term and M —g, N, then N is a good
term.

PROOF. Let Apx(/\iw.P, Q) be a good term with i € X (so it is a fBj-redex). It
is proved by induction on the structure of P that P[z := Q] is a good term. O

Definition 19. A reduction sequence M —»45 N is a superdevelopment if there

exists an initial labelling L such that ML s N L' is a Bj-reduction sequence
to normal form (with L' some labelling).

The following proposition states that no §;-redexes are created by substitution.

With the ‘pattern’ of a redex, the application and lambda symbol on top are
meant.

Proposition 20. If Apx()\im.P,Q) € A; is a good term and a fi-redez, then all

patterns of fi-redexes in Plx := Q)] descend either totally from P or totally from
Q.

PROOF. Suppose Apx(A.,-,:r.P, Q) is a good term with ¢ € X and we have in
P[z := Q] a subterm of the form ApY (\;4.R, S). If the symbol Ap with label Y
originates from P and \; from Q, then j & Y, because ApX (A\;z.P, Q) is a good
term. So in that case Apy()\jy.R, S) is not a fj-redex. It is impossible to have in
Plz := Q] a subterm Ap* (A\jy.R,S) with ApY originating from Q and ; from
P. So if Apy()\jy.R, S) is a Bi-redex in P[z := @], then ApY and); originate
either both from P or both from Q. O

Theorem 21. (FINITE SUPERDEVELOPMENTS) If a A-term M is labelled by an
initial labelling L then all its Bi-reductions are finite.

PROOF. Suppose infinite f;-reduction sequences exist, and let M be a minimal
(with respect to the number of symbols) A-term, labelled by an initial labelling,
that admits an infinite G;-reduction sequence. By minimality M has to be an
application, so M is of the form ApX(Ml, M,). The infinite Sj-reduction sequence
starting with M then must be of the form

ApX (My, My) — 5, ApX iz MY, My) —p, Mifz = M3] —p, ...

In this reduction sequence, we have M; —»p, Mjz.M{ and My —»g, M;, and
moreover i € X. Turn M/ into a context C[,...,] by replacing all free occurrences
of z by 0. So C[z, . ..,z] = M. The last step in the reduction sequence above
can now be written as ApX (\z.Clz,...,z], My) —p C[Mj,..., M;] Now we
claim that all reducts of this reduction sequence are of the form

C'[MYy, ..., MY with C[,...,] =, C'[,...,] and My =g, My, fori=1,...,n.
So all reductions take place either in descendants of CJ, . ..,] or in descendants of
Mj. The claim follows from proposition 20 and the observation that nothing can
be substituted into a descendant of Mj. From the claim it follows immediately
that either M; or M, admits an infinite reduction sequence, contradicting the
minimality of M. (]

180

Definition 22. A reduction relation — is called weakly confluent if for every
two coinitial one-step reductions a common reduct can be found. So if s — ¢t and
s — u then a term v exists such that ¢ —» v and u — v.

In exactly the same way as weak confluence for A-calculus with B-reduction is
obtained one obtains (by checking that the labels match) the same result for §;-
reduction on labelled A-terms. Together with the property that all £;-reduction
sequences are finite we can conclude by Newman’s Lemma that §)-reduction is
confluent. So each term of A; has a unique Sj-normal form. Confluence for A;
with Bj-reduction can also be obtained by noting that it is an orthogonal CRS.

Proposition 23. Let P and Q be good terms of A; that are disjointly labelled. If
P g, P' and Q —p, Q' are B-reductions to normal form, then Pz := Q] =y,
P'[z := Q'] and P'[z := Q'] is a fi-normal form.

PRrROOF. The proof proceeds by induction on the structure of P.

e If P is a variable then the statement follows trivially.

o If P = \y.P, then a §j-reduction sequence of P to its normal form P’
is of the form A\;y. P —»p, A;y.P| with P, —-»g P| a reduction to normal
form. By induction hypothesis, Pi[z := Q] —», Pi[z := Q'] is a reduction
to normal form. Since (M;y.P1)[z := Q] = \iy.Pi[z := Q] it follows that
Pz := Q] g P'[z:= Q'] is a reduction sequence to normal form.

o The last case to be considered is when P = Ap* (P}, P,). Let P, g, P
and P, —»p, P; be reduction sequences to normal form. We distinguish two
cases. First we consider the case that the reduction of P to normal form
is of the form Ap* (P, P;) —5, ApX (P!, P}). By induction hypothesis we
have that Pz := Q] -4, Pl[z := Q'] and Pz := Q] —p, Pjlz := Q']
are reduction sequences to normal form. We have Ap* (P, Py)[z := Q] —p,
Ap* (P}, P;)[z := Q']. The result is in f;-normal form, because even if P'[z :=
Q'] has a X as head symbol this doesn’t yield a B-redex. Namely, if this A
originates from P, its label is not contained in X (otherwise Ap* (P}, P})
wouldn't be a fr-normal form), and if the A originates from Q' it doesn't
yield a fj-redex either since P and @ are disjointly labelled.

In the second case ApX (P!, P}) = ApX (A\;y.Pl;, P}) is a B-redex with con-
tractum Py := Pj]. Since \;y.P{; and Pj are in B-normal form, the
term P{;[y := Pj] is by proposition 20 in B;-normal form. By induction
hypothesis we have that P[z = Q] —p, Ay.P[z := Q'] and Pz :=
Q] —p, Pi[z := Q'] are reduction sequences to normal form. We have
Ap™ (Py, Py)lz = Q] =, Ap* (Niy.Pli [z := Q'], Plz := Q']) —p, (Pliz :=
Q'ly := Pj[z := Q']]. By the substitution lemma of A-calculus, which holds
as well for the labelled case, this term equals (P[; [y := Pj])[z := Q'] which
is by Proposition 20 a 8;-normal form.

]

This proposition yields, together with the property of unique normal forms, that

if the term Ap*(X\;z.P,Q) is good and a B-redex, and its reduct Plz := Q)]

reduces to a §-normal form M, then M is of the form P'[z := Q'], with P’ and

Q' the normal forms of P and Q respectively.

181

Theorem 24; If M > M’, then there exists an initial labelling L such that
ML g MY for some labelling L' and M'Y' is a fBj-normal form.

PROOF. The proof proceeds by induction on the derivation of M > M’. The

first two easy steps are omitted.

o IfM > M is ApX(My, My) > Ap* (M], M}) with M, > M| and My > M},
then by induction hypothesis labellings Ly and L9 exist such that MIL1 g,
M{Ll‘ and Msz — g, M;Lé are reductions to SG-normal form. Without loss
of generality we can suppose L; and La to be disjoint. Take as labelling L
for Ap* (My, M,) the union of L; and L, extended by assigning 0 to the
head-symbol Ap. Then Ap“(A'IIL‘ , M52 =g, Ap«’(M{LIl , M;L"-‘) is a reduction
sequence to normal form.

o If M > M'is due to the fourth clause of the definition of >, then M =
Ap(My, M) and M' = M{[z := Mj] with My > Az.M{ and My > M;. By in-
duction hypothesis, labelling L; and Ly exist such that M — g, (Az.M])5
and MQL2 —g, J\/I.;le are reduction sequences to normal form. Again, L; and
L4 are supposed to be disjoint. Define an initial labelling L as the union of
L, and L, extended by assigning {i} to the head-symbol Ap if 7 is the label
assigned by L] to the head-symbol A of Az.M{. Then

ME = ApU(ME ML) g ApUY (A2 M)E MIE2) g, M (2= ML)

The result of this reduction sequence is in 8;-normal form by Proposition 20.
O

Theorem 25. If M € A; is a good term and M -»g, M’ is a fy-reduction
sequence to normal form, then E(M) > E(M'").

PRrROOF. The proof proceeds by induction on the structure of M. We omit the first
two steps which are trivial. If M = Apx (M1, Ma), two possibilities have to be
distinguished. First the case is considered that the reduction of M to its normal
form M’ is of the form Ap™ (M, My) —p, Ap™ (M{, M}) with M; —4, M! and
My —p, M} Bi-reductions to normal form. By induction hypothesis, we have
that E(M;) > E(M]) and E(M,) > E(Mj). This yields, applying the third
clause of the definition of >, that Ap(E(M,), E(M3)) > Ap(E(M]), E(M3)), or
E(M) > E(M").

Second we consider the case that the reduction sequence of M is of the form
ApX(My, My) —pg, ApX (Niz.M!, M}) —p, M}z := M}] —4, M'. By Proposi-
tion 23, M’ is of the form M}'[z := MJ'] with M{' and M} the normal forms of M
and M; respectively. Then M) —» g, A\;z.M{ and My — My are f-reduction se-
quences to normal form. By induction hypothesis, we have E(M1) > E(\z.M{
and E(M,) > E(MJ). By the fourth clause of the definition of >, we have
B(M) > E(M!)[o := B(MY)] = E(M!'[s := M}]) = E(M") 0

Corollary 26. M > N if and only if there exists a superdevelopment M — N.

A

182

cknowledgements

I am very grateful to my supervisor Jan Willem Klop for introducing me to the

su

bject of higher-order rewriting. Special thanks to Vincent van Oostrom for

several examples and counterexamples. I would like to thank Aart Middeldorp,
Tobias Nipkow and Fer-Jan de Vries for comments on earlier versions of this
paper. The paper benefitted from the remarks of the anonymous referees.

References

10.

11.

. P. Aczel. A general Church-Rosser theorem. Technical report, University of
Manchester, 1978.

H.P. Barendregt. The Lambda Calculus, its Syntar and Semantics. North Holland,
second edition, 1984.

R. Hindley. The equivalence of complete reductions. Transactions of the American
Mathematical Society, 229:227-248, 1977.

S. Kahrs. A-rewriting. PhD thesis, Universitdt Bremen, 1991.

Z. Khasidashvili. Church-Rosser theorem in orthogonal combinatory reduction
systems. Technical Report 1824, INRIA Rocquencourt, 1992.

J.W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts Nr. 127,
CWI, Amsterdam, 1980. PhD Thesis.

J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,
Université de Paris VII, 1978.

T. Nipkow. Orthogonal higher-order rewrite systems are confluent. In M. Bezem
and J.F. Groote, editors, Proceedings of the International Conference on Typed
Lambda Calculi and Applications, pages 306-317, Utrecht, 1993. Springer LNCS
664.

M.J. O’Donnell. Computing in Systems described by Fquations. Lecture Notes in
Computer Science 58. Springer-Verlag, 1977.

B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. JACM,
20(1):160-187, 1973.

M. Takahashi. A-calculi with conditional rules. In M. Bezem and J.F. Groote,
editors, Proceedings of the International Conference on Typed Lambda Calculi and
Applications, pages 306-317, Utrecht, 1993. Springer LNCS 664.

